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Two rigorous theorems on the momentum distribution 
functions of the Hubbard model at half-filling 

Guang-Shb Tian 
Lkpartment of Physics, Peking University, Beijing 100871, People’s Republic of China 
and The InstiNte for Theoretical Physics, Academia Sinica, Beijing 100080, People’s 
Republic of China 

R e e k e d  21 February 1994 

Abstract In this article, based on a recent theorem by Lieb er al, we shall prove two theorems 
on Ihe momentum distribution functions of the half-filled Hubbard model on a ddimensional 
simple cubic lattice in a mathematically rigorous way. More precisely, we shall first show that 
the half-filled positive-U and negative4 Hubbard models have the same momentum distribution 
functions n (4) and n+(q). Then, we will show that n.(q) are symmetric functions about the 
value E = 3. Fmally. we shall briefly discuss some possible applications of these theorems to 
the further numerical investigations on the ground state of the Hubbard model at half-filling. 

F 

Attempts to understand the properties of the copper oxide based high-T, superconductors 
have led to an increased interest in the models of strongly correlated electrons moving in 
two spatial dimensions. In particular, the normal-state properties of these materials have 
brought to attention the inadequacy of the phenomenology of the Fermi-liquid theory. Varma 
et ai [ 11 proposed that the normal state of the copper oxide based superconductors could he 
described by a marginal Fermi-liquid theory. Noticing the rigorously known breakdown of 
the Fermi-liquid theory in one dimension [2-6], Anderson 171 suggested that similar non- 
Fermi-liquid behaviours can also be found in a two-dimensional strongly correlated electron 
system. A characteristic feature of the non-Fermi liquids is the absence of discontinuity in 
the momentum distribution function n(k) at the Fermi momentum & [3-5]. To determine 
whether the Hubbard model falls into the Fermi-liquid or non-Fermi-liquid category, many 
researchers have applied various methods to calculate the momentum distribution function 
of the Hubbard model [S-141. 

In a very recent article, Lieb, Loss and McCann [15] extended a previous result of 
MacLachlan 116,171 and proved a very interesting theorem on the one-particle density 
matrix of the half-filled Hubbard model on a bipartite lattice. In this article, based on 
the theorem by Lieb et al, we shall prove some new rigorous results on the momentum 
distribution functions of the Hubbard model. 

Before proceeding to the statement of our theorems, we would first like to introduce 
some useful notation and terminologies. 

Take a finite d-dimensional simple cubic (sc) lattice A with NA = Ld lattice points (we 
let the lattice constant U = 1) and impose the periodic boundary condition on A. Then, the 
Hamiltonian of the Hubbard model on A can be written as 

(1) 
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where cju (cib) is the electron creation (annihilation) operator which creates (annihilates) an 
electron of spin U at lattice site i. ne, = cl&< and (ij) denotes a pair of nearest-neighbour 
lattice points. t =- 0 and U are two parameters representing the hopping energy and the 
on-site interaction of electrons, respectively. In the conventional Hubbard Hamiltonian, 
the parameter U is chosen to be positive for an on-site Coulomb repulsion. However, 
it is well known [18] that the negativeU Hubbard model also has many applications in 
condensed matter physics. Therefore, in this article, we shall study both positive and 
negative-U Hubbard models. With respect to the Hamiltonian (I), the sc lattice is apparently 
a bipartite lattice. Namely, it can be divided into two separate sublattices A and B such 
that electrons can only hop from a site in one sublattice to a site in another sublattice. 
Furthermore, it is easy to see that the Hamiltonian commutes with the electron-number 
operator I? = xi., &in. Therefore, the number of electrons is a good quantum number. 
In particular, when the number of electrons is equal to the number of the lattice sites N A ,  
the Hubbard model is called half-filled. 

With these definitions, the rigorous result of Lieb et al [U] can be summarized in the 
following theorem. 

The uniform-demity theorem. Let Yo(& U )  be the ground state of the half-filled Hubhard 
model on an arbitrary bipartite lattice. For both U =- 0 and U -= 0, the elements of the 
oneparticle density matrix of Yo(A, U) satisfy 

+ i f h = s  
0 if h # s are in the same sublattice . fha(U) = ~Yo lc~c ,~ l~ouo)  = 

Remark 1. In their original article [E], Lieb etal proved the uniform-density theorem for 
a much wider class of strongly correlated electron models. Here, we have tailored their 
theorem into a simpler form which is more suitable for our following discussions. 

Remark 2. The uniformdensity theorem tells us a great deal about the reduced one-particle 
density matrix of the half-filled Hubbard model. However, to study various kinds of long- 
range orders, such as the antiferromagnetic long-range order in the ground state of this 
model, one has to investigate the reduced two-particle density matrices (as explained by 
Yang in 1191). 

To begin with, we first order the lattice points of A alphabetically and write F(u) = 
(fhe(u)) in an N A  x N A  matrix. Since the Hubbard Hamiltonian (1) and its gound state 
Yo(A. U) at half-filling are translationally invariant under the periodic boundary condition, 
the matrix elements of F(u) satisfy 

f d u )  = f(h - s, 0). (3) 

For a matrix subject to condition (3), we have the following lemma. 

Lemma 1. Let A = (aij)  be an N A  x N A  matrix defined on a SC lattice A. Assume that 
the elements of A satisfy condition (3). Then, all of its eigenvalues are given by 

where q is a reciprocal vector of A. 
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This lemma is well known in matrix theory. In a previous article [ZO], this lemma 
was used to study off-diagonal long-range order [191 in the ground state of the negative-U 
Hubbard model. For completeness, we give its proof. 

PmoJ Take an arbitrary reciprocal vector g of A. We define vector uq by 

uq( i )  = exp(-ig. i) (5) 

where u,( i )  denotes the ith component of uq. With definition (5). two vectors uql and uq2 
are perpendicular to each other if 91 # 42. Namely, 

U,, am = &, ( i )um(i)  = 0. (6) 
i E A  

We now show that these vectors are actually the eigenvectors of A. 
By the definitions of matrix A and vector uq, we have 

Therefore, U, is an eigenvector of A corresponding to the eigenvalue A, given in (4). On 
the other hand, the total number of reciprocal vectors of A is equal to N A .  Consequently, 

Applying this lemma to the one-particle density matrix F(u) of YO(& U), we find that 

{Aq] is the complete set of the eigenvalues of A which is an NA x NA matrix. 

the eigenvalues of F(u) are 

1 
= - x x C d u ) e x p [ i q . ( h -  s)l= (YO(A,U)IC~~~,~IY~(A,U)) =&(a) 

NA hEA *EA 

where cqc = l / a  &, cj. exp(-ig i), and p is a reciprocal vector. In other words, 
the totality of the eigenvalues of F(u) is actually fi\e momentum dishibution function of 
electrons of spin U .  Therefore, our knowledge of the one-particle density matrix P(u) of 
YO(& U) can be used to derive the properties of the momentum distribution function of 
the translationally invariant ground state. In particular, we would expect that the uniform- 
density theorem tells us a great deal about the momentum distribution functions of the 
half-filled Hubbard Hamiltonian on a &dimensional sc lattice. 

First, as an application of the uniform-density theorem, we prove 

Theorem 1. The momentllm distribution functions of both half-filled positive-U and 
negativell Hubbard Hamiltonians on the same sc lattice are identical. 
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Proof. As concluded above, to prove theorem 1 we need only show that the one-particle 
matrices of both positive-U and negative4 Hubbard Hamiltonians at half-filling have the 
same eigenvalues. For this purpose, we exploit the well known unitary partial particle-hole 
transformation [21] 

(9) 

where 7r = (n, . . . , x ) .  Under this transformation, the positive-U Hubbard Hamiltonian 
(1) is transformed into the negative-U Hubbard Hamiltonian of the same form. Since the 
transformation is unitary, both Hamiltonians should have the same energy spectrum. In 
particular, the global ground state of the positive-U Hubbard Hamiltonian is mapped onto 
its negative4 counterpart. On the other hand, it has been shown that the global ground state 
of the Hubbard Hamiltonian (1) on an arbitrary bipartite lattice coincides with its ground 
state Yo(A, U) at half-filliigt. Therefore, under the partial particle-hole transformation, 
\u,(A, U) is mapped onto Qo(A, -U). Consequently, by using the first equality of (9), we 
immediately obtain 

(10) 

t . . A  

fiociffiJ = cit u O ~ ~ J U J  = exp(-in i)ci, 

(Yo(& U)I&c~~I'WL U)) = Wo(A9 -UkAtc~tW'o(A. -U)). 

Namely, F ( f ,  U) = F ( f ,  -U) at half-filling and hence, 

n&, U) = n&. --U). (11) 

Next, we show that F($, U )  = F(&, -U) as well as equation (11). 
We notice that, by the uniform-density theorem, we need only consider those matrix 

elements fj.(&) with h and s in different sublattices. Under the partial particlehole 
transformation 

fd$, U) = W o h L  U)lcL~csil*o(A. U)) 

= (Yo (A, U )  I fi: @ O C ~  fii) ( f i o ~ a ~  fiJ)go I %(A1 U)) 

= (Y~(A, -U)I exp(in. h)Ch& exp(-in. S)C:~IY~(A, -U)) 

= (-1)exptin. (h - s)I(Yo(A, - U ) I C ~ ~ C ~ ~ I W A ,  -U)) = fsh(&, -U). 
(12) 

(In the last step of the derivation of (12), we used the fact that h and s are. in different 
sublattices and hence, exp[in * (h - s)] = -1.) Therefore, F(&, U) = p(&, -U), the 
transpose of the matrix F(J, -U). On the other hand, since the Hubbard Hamiltonian (1) 
on the finite lattice A is a real matrix, we can write its global ground-state wavefunction 
%(A, -U)  as a real linear combination of a real basis of vectors. Consequently, all the 
matrix elements of F($, -U) are real numbers and hence, we have 

(13) 

Therefore, the oneparticle density matrices F ( & , U )  and F(&,-U) have the same 
eigenvalues and hence identity (11) also holds for the momentum distribution functions 
of down-spin electrons. 

F(&. U) = F(&, -U) = @(&, -U) = F(&, -U). 

Our proof is accomplished. U 

t rm6fau is well known for the Hubbard Hamiltonian (1) in the thermodynamic limit. For a finite bipartite lattice 
A. it was recently proved by E H  Lieb. We thank Professor Lieb for showing us his results before publication. 



The Hubbard model a t  ha(f$lling 3639 

Some remarks are in order. 

Remark 3. In one dimension, the conclusion of theorem 1 is well known. In a seminal 
article, Mattis and Lieb [4] rigorously solved the one-dimensional Luttinger model [3] which 
represents a strongly correlated spinless fermion system. By using this exact solution, they 
showed explicitly that the momentum distribution function of this system is independent of 
the sign of interactions. 

Remark 4. Theorem 1 has some very interesting physical implications. Originally, 
the negative-U Hubbard model was introduced to describe the real-spacepairing 
superconductors [18] while its positive-U counterpart is mainly used to study the metal- 
insulator transition in a strongly correlated electron system [22]. When IUI is sufficiently 
large, one would expect that the ground state of the negative-U Hubbard model is a 
Bose-Einstein condensate of the paired electrons, which behave like bosons. For such a 
system, the Fermi surface in the reciprocal vector space is meaningless. On the other hand, 
theorem 1 tells us that the momentum distribution functions of both negativeu and positive- 
U Hubbard models at half-filling are identical. Therefore, the Fermi surface should also be 
absent in the ground state of the positive-U Hubbard model ,at half-filling. In other words, 
the half-filled positive-U Hubbard model describes a non-Fermi liquid. In one dimension, 
this fact is obvious. By the exact solution of Lieb and Wu [23], the ground state of the 
positive-U Hubbard model at half-filling is insulating for any U > 0. Therefore, it cannot 
be a Fermi liquid. In d 2 2 dimensions, the situation is rather  complicated.^ When U == 2dt, 
the ground state of the half-filled Hubbard model is apparently insulating. However, when 
0 < U < 2df, there is no rigorous result known. By using some approximate methods, 
such as~mean-field theory and Monte Carlo calculations [XI,  we found that, in this case, 
the ground state of the half-filled Hubbard model has a spin-wave energy gap which renders 
the system an insulator. Consequently, the ground state is still not a Fermi liquid. Our 
rigorous theorem is consistent with this picture. 

Remark 5. Obviously, the identity F(&, U) = F(&, - U )  can be shown directly by using 
the unitary partial particle-hole transformation for down spins. To avoid introducing an 
unnecessary new transformation, we applied the uniform-density theorem to prove the 
identity. 

Next, we proceed to show another corollary of the uniform-density theorem. It gives us 
more detailed information on the momentum distribution functions of the Hubbard model 
at half-filling. 

Theorem 2. The momentum distribution functions of the half-filled Hubbard model on a 
d-dimensional sc lattice are symmetric about value R = f. In other words, if n,(ql) = 4+6 
(8 > 0 is a constant) for some reciprocal vector 91, then there must be another reciprocal 
vector qz at which n,(qz) = 5 - 6. 

Proof. To prove this theorem, we exploit the bipartite property of the d-dimensional sc 
lattices with respect to the Hubbard Hamiltonian (1). 

By properll grouping the indices of the matrix elements of F(u), we can rewrite it into 
a new matrix F(u) with the following block form 

1 
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where each blockis an N,, 12 x, N,j 12 submatrix. By the uniform-density theorem, we can 
easily determine FAA(U) and FAA(u). 

Obviously, ?(U) is unitarily equivalent to F(u). Therefore, they have theJame eigenvalues. 
From elementary linear algebra, we know that the eigenvalues of F(u) are given by 

the solutions of its characteristic equation 

det(AI - ?(U)) = 0. (16) 
On the other hand, for a matrix in block form (14), calculation of its determinant can be 
made easier by using the following lemma. 

Lemma 2. Let M be a 2N x 2N matrix of the following form: 

where A, E ,  C and D are N x N square submatrices. For such a matrix, we have 

detM = det A det(D - CA-'B). (18) 

In particular, if A commutes with C then det M = det(AD - CB) and it holds even if A 
has no inverse. A proof of this l e m a  can be found on page 17 of [25]. 

Applying this lemma to matrix F(u), we immediately obtain 

det(AI -?(U)) = det[(A - $)'I - ?A:AB(u)?BA(u)I 

(19) = det[(A - $)'I - ?,~(u)FA,(u)] "t = 0 

since (A - f)I commutes with any matrix. Therefore, if AI = i + S is a root of the 
characteristic equation of ?(U), A2 = - 6 must also be a root, i.e. the eigenvalues of 
?(U) are symmetrically paired about ri = i. Consequently, the momentum distribution 
functions n&) are symmetric about 17 = $. 

Theorem 2 is proved. 0 

Remark 6. It is interesting to see that, when the interaction between electrons is absent, 
theorem 2 is a direct consequence of the Pauli exclusion principle. In fact, with U = 0, the 
Hubbard Hamiltonian is reduced to 

Ho= - t C C ( c o s q l  +"'+cosqd)c~,C,, (20) 
0 9  

after a Fourier transformation. According to the Pauli exclusion principle, when temperature 
T = 0, the lowest energy levels will be first filled up by electrons and there is exactly one 
electron of spin U per each occupied energy level. Therefore, the momentum distribution 
functions of this system are of the following form 

where k~ is the Fermi momentum. In particular, when the lattice is half-filled, n&) is 
apparently symmetric about E = 4. 
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Notice that, if the ground state of a strongly correlated electron system is a non-Fermi 
liquid then its momentum distribution functions n,(q) should be continuous at the Fermi 
surface. Consequently, no(q) are continuous functions in the reciprocal vector space. 
Therefore, a direct corollary of theorem 2 is: 

Corollary of theorem 2. A necessary condition for the ground state of the half-filled 
Hubbard model on a sc lattice to be a non-Fermi liquid is, in the thermodynamic limit, 

n,(q) = f (22) 

which holds for at least one reciprocal vector q. 

Obviously, theorem 2 and its corollary alone are not sufficient to determine whether 
there is a discontinuity of n,(q) on the Fermi surface. However, under some circumstances, 
theorem 2 becomes more restrictive and may be useful for further numerical investigation 
of the properties of the Hubbard models. For examples, we shall consider the following 
cases. 

Case 1: The one-dimensional Hubbard model. The momentum distribution functions of 
the one-dimensional Hubbard model at half-filling have been studied intensively by many 
researchers [&lo]. Many physicists believe that the momentum distribution functions of 
the ground state W,(& U) is a non-increasing function of q and has the following form 

ndq)  = a  -b&q - k d q  - k d  (23) 

when q is near kF. In formula (23), a, b and e are constants. If this is me ,  then, by theorem 
2, we must have: 

(i) the constant a in formula (23) equal to ii = 1; and 
(ii) if 

then, n",(q) are symmetric functions about the vertical line q = kF = IT. 

Case 2: The halfijilled Hubbard mdels on the d-dimenswnal sc lanices with d > 2. In this 
case, we conjecture that the momentum distribution functions n,(q) are also non-increasing 
functions of r(q). Namely, if 

E ( Q 1 )  = -t(cosq11 +cosql2+..'+cosq1d) 
< - t ( c o s q 2 1 + C O S q 2 2 + . . . + C O S q ~ ) I E ( q 2 )  (25) 

then n,(ql) 2 n,(q2). When U = 0, this conjecture is apparently true. It is also supported 
by recent numerical calculations [13,141. If this conjecture holds, then, by using theorem 2, 
we find that the ground state Yo(A, U) of the half-filled Hubbard model on a &dimensional 
sc lattice is a non-Fermi liquid if, and only if, n , ( k )  = f .  Further study on this conjecture 
is continuing. 

Before we finish this article, we would like to make two further remarks. 
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Remark 6. As we have shown above, the proofs of theorem 1 and 2 are completely based 
on the uniform-density theorem. In their original paper 1151, Lieb et al actually proved this 
theorem for both the T = 0 and T # 0 cases. Therefore, theorems 1 and 2 can be easily 
extended to the cases of non-zero temperature. 

Remark 7. In the proof of the uniform-density theorem, Likb et al mainly used the unitary 
particle-hole transformation introduced by MacLachlan [16,17]. Similarly, in our proof 
of theorem 1, we exploited the well known unitary partial particlehole transformation 
1211 between the positive-U and negative-U Hubbard Hamiltonians. Therefore, if the 
Hamiltonians of some strongly correlated electron systems are also invariant under these 
unitary transformations then the theorems of this article should also be applicable to these 
systems. 
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